

NHT Funded Project NLP 13188

The effects of waste disposal on groundwater quality in Tasmania

Smithton sewage lagoons

While every care has been taken in the preparation of this report, no warranty is given as to the correctness of the information and no liability is accepted for any statement or opinion or for any error or omission. No reader should act or fail to act on the basis of any material contained herein. Readers should consult professional advisers. As a result the Crown in Right of the State of Tasmania and its employees, contractors and agents expressly disclaim all and any liability (including all liability from or attributable to any negligent or wrongful act or omission) to any persons whatsoever in respect of anything done or omitted to be done by any such person in reliance whether in whole or in part upon any of the material in this report.

Mineral Resources Tasmania Tasmanian Geological Survey Record 2002/05

Groundwater quality investigations at the Smithton sewage lagoons

A. R. Ezzy

Abstract

Groundwater was investigated in the area of the Smithton sewage lagoons to determine if the lagoons were affecting groundwater quality. Significant nitrogen-based groundwater contamination was identified in excess of guideline limits. Natural attenuation processes appear to be occurring beneath adjacent farmland.

INTRODUCTION

Mineral Resources Tasmania (MRT) initiated a project to investigate the effects of waste disposal on groundwater quality in Tasmania. The project was funded by MRT and the Natural Heritage Trust (NHT) and included a number of sites for detailed study. The sewage lagoons at Smithton were one of these sites.

The objectives of the investigations at the Smithton sewage lagoons were to:

- Determine the geological nature of the host materials;
- □ Identify the depth of the water table;
- □ Examine the quality of the groundwater;
- Determine the permeability of the host materials; and
- □ Identify if a potential hydraulic connection exists between the lagoons and the local groundwater system.

SITE DESCRIPTION

The Smithton sewage lagoons are located approximately two kilometres northwest of Smithton (339 800 mE, 5 479 000 mN) (fig. 1). The (then) Department of Environment approved the initial lagoon construction and the facility is currently licensed by the Department of Primary Industries, Water and Environment (DPIWE). A major upgrade was undertaken between 1988 and 1990 to treat McCains Foods vegetable processing waste water under a joint agreement between the Circular Head Council, McCains Foods and the Tasmanian Government. During the 1988–1990 upgrades, six lagoons were constructed in Quaternary sand deposits with HDPE liners installed on the lagoon bund walls (constructed from materials excavated on site). Because of the groundwater conditions encountered during the upgrade, no liners were installed in the base of the lagoons. As a result of this design, the lagoon bases are located in the unconfined water table, creating a migration pathway for waste water.

Geology

The Tasmania Department of Mines 1:50 000 scale Smithton geological map (Lennox *et al.,* 1982) indicates that the geology of the area is mainly comprised of

Extract from the Smithton geological map (Lennox et al., 1982) of the local area and related geology.

Quaternary windblown sand, with additional clay and sand tidal salt marsh deposits in the western part of the site. Figure 2 is a modified extract from the Smithton geological map.

Geological mapping during the present study showed that Quaternary sand deposits dominate the site. Marshes were observed in the western area of the site grading into tidal mud salt flats. The northwestern sludge drying lagoons are located on these tidal mud deposits (Plate 1), with the remainder of the lagoons and sludge stockpiles being located on sand deposits. Shell fragments encountered during drilling suggest that most of these sand deposits were formed in a beach environment.

Hydrology

The lagoons are located east of Kemps Bay on Pelican Point, a low lying peninsula approximately one kilometre wide that extends into Duck Bay. Australian Bureau of Meteorology rainfall station 091092 at Smithton (Grant Street) is the closest rainfall station to the site. The rainfall chart of average monthly recorded rainfall (fig. 3) shows a marked seasonality, with the highest rainfall in autumn/winter (April to October). The average annual rainfall for the station (1105.6 mm) is high for the region.

Plate 1. Lagoons constructed on tidal marsh deposits in the northwest corner of the site.

Figure 3

Average monthly rainfall for Australian Bureau of Meteorology rainfall station 091092, Smithton (Grant Street).

INVESTIGATION METHODS

Borehole drilling and installation

Fourteen 120 mm diameter monitoring bores were auger drilled to depths of between 4.0 and 7.5 metres between 30 August and 5 September 2000. Fifty millimetre PVC casing and slotted screens with bentonite seals were installed in each hole. The locations of the bores are shown on Figure 4, with engineering logs given in Appendix 1. All bores were logged in accordance with AS 1726-1993. Plate 2 shows the area where bores SLL2000/1, 4, 5 and 6 were drilled to assess any attenuation process occurring on adjoining farmland to the east of the lagoons. Bore SLL2000/14 was drilled and installed as a background hole.

Groundwater was encountered between 0.8 and 4.5 metres below ground level across the site. Flow during drilling indicated that the groundwater in all boreholes was unconfined. Recorded pumping yields of bores at the time of installation ranged between 0.01 to 0.21 litres/second. Lower yields occurred from bores installed in the clayey sand tidal marsh deposit.

Figure 5 shows a cross-section and related standing water levels on 13 August 2001 for bores SLL2000/1, 4, 5, 6, 7 and 8. Primary lagoons 1 and 2 and site investigation soil classifications are also superimposed on Figure 5.

Both the unsaturated and saturated zones consist of heterogenous layers of fine to coarse-grained sand. Shell fragments were intersected in bores SLL2000/10, SLL2000/12 and SLL2000/14 while mottled clay was intersected in bores SLL2000/3 and SLL2000/4. Waste fill was intersected in borehole SLL2000/9.

During the installation of SLL2000/8 on 31 August 2000, a significant volume of hydrogen sulphide gas vented from the borehole. The source of the gas may have been buried organic material in the tidal marsh deposits and/or biological activity in the deposits as a result of nutrients leached from the sewage sludge stockpiles. Plate 3 shows the location of SLL2000/8 with respect to stockpiles of sewage sludge in close proximity to the western-side tidal marsh deposits.

Plate 2

The area where bores SLL2000/1, 4, 5 and 6 were drilled to assess any attenuation process occurring on adjoining farmland to the east of the lagoons.

Figure 4 Locations of environmental monitoring bores installed at the Smithton sewage lagoons.

Figure 5. Cross-section and related standing water levels on 13 August 2001 for bores SLL2000/1, 4, 5, 6, 7 ,and 8, with respect to the location of primary lagoons 1 and 2.

Plate 3. The location of SLL2000/8 with respect to stockpiles of sewage sludge in close proximity to the western-side marsh tidal deposits.

In situ permeability testing

Slug extraction tests were carried out on 14 August 2001 on bores SLL2000/7 and SLL2000/12. Data collected during the slug extraction tests are presented in Appendix 2.

Slug extraction tests were completed (30 to 120 litres) and levels monitored for 30 minutes (time for 95% plus recovery). Test data were analysed in the software package AquiferWin32 (Version 2.17, Environmental Simulations Inc.). The Bouwer and Rice (1976 Unconfined Aquifer) solution was used to calculate the hydraulic conductivities illustrated in Figure 6 (a)

and (b) for holes SLL2000/7 and SLL2000/12 respectively. This method was selected as the most appropriate available within the software package.

These results imply that fines (silt) are clogging the sand. Both holes are on the western side of the lagoons, in the area of tidal marsh deposits. During construction excavated local sand was deposited at the location of SLL2000/12 and most likely also to some degree at SLL2000/7. Similar hydraulic conductivities are likely to exist in the beach sand deposits across the site, with lower permeability expected in the undisturbed tidal marsh deposits.

Hydraulic conductivity values calculated in AquiferWin32 Version 2.17, Environmental Simulations Inc., Bouwer and Rice (1976, Unconfined Aquifer) solution

HYDROLOGICAL MODEL

The cross section shown in Figure 5 indicates that the water table slopes towards the west and east. The cross section also suggests a direct hydraulic connection between the groundwater system and the infrastructure of primary lagoons 1 and 2. Because of the depth of water in all other bore holes, all lagoons at the site most likely directly recharge groundwater.

A groundwater mounding effect appears to be associated with the recharge of the unconsolidated Quaternary aquifer by the lagoons, with the mound probably occurring on all sides of the combined lagoon footprints. Plate 4 shows the discoloured water in the eastern area of the site perimeter drain (which could act as a discharge system to the groundwater mound). Groundwater mounding appears to be discharging via the perimeter drain and past monitoring undertaken by the Department of Primary Industries, Water and Environment has detected high ammonia concentrations along the total length of the perimeter drain. Tidal effects are also suspected and may be affecting the groundwater hydraulic regime at this site.

Figure 7 illustrates an interpretation of the piezometric surface based on surveyed heights and groundwater depths of the boreholes. Figure 8 shows a cross-sectional conceptual model of equipotential and related flow lines at Kemps Bay, the southwest sewage sludge stockpiles, the primary sewage lagoons, and farmland to the east. This model could be further defined once the extent and influence of the tidal marsh deposits was quantified.

Figure 8

Cross sectional conceptual model of equipotential and related flow lines of Kemps Bay, the southwest sewage sludge stockpiles, the primary sewage lagoons and farmland to the east.

Plate 4 *Discoloured water in the eastern area of the site perimeter drain.*

Interpretation of the piezometric surface (mound) based on surveyed heights and groundwater depths of the boreholes (RL metres).

GROUNDWATER CHEMISTRY

All bores were sampled on 1 November 2000 in accordance with Australian/New Zealand Standard AS/NZS 5667.11:1998. Analytical Services Tasmania, in accordance with relevant Australian and international standards, carried out laboratory testing of samples of groundwater extracted from the boreholes. The laboratory report from Analytical Services Tasmania is presented in Appendix 3. Values for pH ranged from 6.5 to 7.4, with conductivity values ranging between 747 and 12 900 µS/cm.

Analytical results are presented on site maps in Appendix 4. Figure 9 is a cation Ternary plot for the results of the groundwater samples, while Tables 1 and 2 are comparisons of the analytical results against international standards where a guideline/emission value is stated by the relevant standard.

Groundwater chemistry varies significantly between the background bore (SLL2000/14) and the thirteen other bores installed in the area of the sewage lagoons. Groundwater in the vicinity of the lagoons has elevated chemical results for selective water quality parameters, including ammonia (some results several orders of magnitude over the legal emission limit), chloride, ortho-phosphate and sulphate. Bores SLL2000/1, 4, 5 and 6 show decreasing ammonia values moving away from the eastern side of the lagoons, which may indicate a natural attenuation process.

The water chemistry on the anion Ternary plot for bores SLL2000/8 and 12 indicates a high proportion of chloride ions. Conductivity and TDS results for these two boreholes suggest that residual salinity most likely occurs within the tidal marsh deposits. The distinct water chemistry for bore SLL2000/9 on the anion Ternary plot is possibly the result of the bore being screened below buried decaying refuse fill material. This is also demonstrated by the highest recorded sulphate value (1400 mg/L) in the groundwater at the site.

CONTAMINATION ASSESSMENT

Significant contamination of groundwater by nitrogen-based ammonia has been identified but the degree and extent of the contamination has not been fully quantified. Natural attenuation appears to be an important process occurring within the contamination plume(s). This microbiological driven process is affecting the groundwater chemistry within the local hydrogeological system. Major groundwater cations and anions also appear to be diluted by leakage from the lagoons via the unconsolidated unconfined aquifer.

Unlined sewage sludge stockpiles may also be releasing some nutrients to the aquifer, although the main source of contamination is considered to be the lagoons themselves.

PRINCIPAL CONCLUSIONS

Major nutrient contamination of groundwater has been confirmed in the area of the Smithton sewage lagoons. The pond bases are below the unconfined water table, which is undesirable. Tidal marsh deposits have the potential to act as an aquitard. A process of natural attenuation appears to be occurring beneath adjacent farmland. Monitored natural attenuation (MNA) is considered the most appropriate action for this site.

FURTHER WORK

Pump tests are required on bores on the eastern side of the lagoons. Further work may quantify the southern and northern extent of the groundwater mound and associated contamination. The calculation of seepage estimates could be undertaken by measuring hydraulic gradients (and assuming a porosity of 0.35).

An electromagnetic (EM31/EM34, TEM) survey is recommended to identify zones of high and low ground conductivity. The survey could help to define the extent of variations in groundwater chemistry and potentially the extent of the groundwater mound associated with the lagoons. The extent and nature of the tidal marsh deposits (residual salinity) should be considered in the analysis of geophysical investigations at the site. This would require more detailed geological mapping of the tidal marsh deposits. Calibration of the mound and migrating plume(s) should also consider both water chemistry and conductivity of the sewage pond water.

Future monitoring of microbiological water quality parameters may help to confirm the extent of the degradation of groundwater quality in the local area and the processes associated with natural attenuation at the site. Monitoring of microbiological water quality parameters is considered to be a priority.

REFERENCES

[30 May 2002]

LENNOX, P. G.; CORBETT, K. D.; BAILLIE, P. W.; CORBETT, E. B.; BROWN, A. V. 1982. *Geological Atlas 1:50 000 Series. Sheet 21 (7916S). Smithton.* Department of Mines Tasmania.

7.0 2060 877 <1 779 140 0.29	7.0 2180 1260 <1	6.5 1280 851 <1	6.9			c/nnn7	nt/nnnz	70007	2000/12	2000/13	2000/14	Emission limit
2060 877 <1 779 140 0.29	2180 1260 <1	1280 851 <1		7.0	7.1	6.7	7.0	7.4	6.8	6.8	7.2	N/A
877 <1 779 140 0.29	1260 <1	851	1630	2980	12900	3240	3740	1200	7770	1440	747	N/A: note average sea water value 36 000
<1 779 140 0.29	$\overline{\vee}$	V	096	2010	8750	2910	ı	ı	ı	ı	ı	N/A
779 140 0.29		,	∇	\checkmark	∇	∇	∇	∇	∇	∇	∇	N/A
$140 \\ 0.29$	672	455	697	761	429	740	1300	312	778	356	252	N/A
0.29	380	110	130	320	4000	41	380	160	1600	200	26	250* (mg/L)
	0.27	0.09	0.07	1.5	1.1	0.05	ı	ı	ı	ı	ı	1.5^{*} (mg/L)
2.7	11	4.8	1.0	480	650	1400	140	3.5	300	18	14	250^{*} (mg/L)
84.4	0.80	1.40	23.1	0.837	0.406	12.5	11.7	16.1	24.7	33.2	0.295	0.5* (mg/L) nitrogen (as ammonia)
0.006	0.004	0.012	0.008	0.006	0.012	0.006	0.00	0.007	0.012	0.007	2.9	10.0* (mg/L) nitrogen (as nitrate or nitrite)
0.002	<0.002	0.007	0.003	<0.002	0.006	0.002	0.004	0.003	0.006	0.003	0.005	10.0* (mg/L) nitrogen (as nitrate or nitrite)
5.44	0.004	0.006	0.003	0.007	0.013	0.004	0.012	2.18	0.005	0.031	0.01	2.0* as phosphorus
2.7 84.4 0.006 0.002 5.44	0.27 11 0.80 0.004 <0.002 0.004	0.09 4.8 1.40 0.012 0.007 0.006	0.07 1.0 23.1 0.008 0.003 0.003	1.5 480 0.837 0.006 <0.002 0.007	1.1 650 0.406 0.012 0.006 0.013	0.0 140 12. 0.00 0.00	ល្ ខែ ល់ក្រុ4	0 140 140 5 11.7 6 0.009 2 0.004 4 0.012	5 -	5 -	5 -	5 -

Table 1

Anion Ternary plot for groundwater bores at the Smithton sewage lagoons. 1 - SLL2000/1; 2 - SLL2000/2; 3 - SLL2000/3; 4 - SLL2000/4; 5 - SLL2000/5; 6 - SLL2000/6; 7 - SLL2000/7; 8 - SLL2000/8; 9 - SLL2000/9; 10 - SLL2000/10; 11 - SLL2000/11; 12 - SLL2000/12; 13 - SLL2000/13; 14 - SLL2000/14; 15 - average of all MRT groundwater records for Quaternary coastal sands.

Figure 9

Tasmanian Geological Survey Record 2002/05

10

00	LIVESTOCK	DKINKING				(2) 2,000–10,000 (Refer Table 4.3.1)							
ANZECC 20	IRRIGATION	STV LTV (Short-term) (Long-term)		**6.0-8.5	(1) (Refer Tables 4.2.3 & 4.2.4)		(3) MT (Refer Table 4.2.6) MR (Refer Table 4.2.7)	4 1					
	14	(back ground)	1.05	7.2	747	ı	26	ı	14	0.295	2.9	0.005	0.01
	13		1.55	6.8	1440	ı	200	ı	18	33.2	0.007	0.003	0.031
	12		1.50	6.8	7770	ı	1600	ı	300	24.7	0.012	0.006	0.005
	11		1.35	7.4	1200	ı	160	1	3.5	16.1	0.007	0.003	2.18
Ś	10		3.74	7.0	3740	ı	380	ı	140	117	0.009	0.004	0.012
NOODA	6		2.65	6.7	3240	2910	41	0.05	1400	12.5	0.006	0.002	0.004
VAGE LA	×		0.46	7.1	12900	8750	4000	1.1	650	0.406	0.012	0.006	0.013
TON SEV	~		0.50	7.0	2980	2010	320	1.5	480	0.837	0.006	<0.002	0.007
UHTIMS	9	9		6.9	1630	960	130	0.07	1.0	23.1	0.008	0.003	0.003
	ы		1.01	6.5	1280	851	110	0.09	4.8	1.44	0.012	0.007	0.006
	4		0.80	7.0	2180	1260	380	0.27	11	0.8	0.004	<0.002	0.004
	ю		0.32	7.0	2060	877	40	0.29	2.7	84.4	0.006	0.002	5.44
	2		0.98	6.7	3700	1390	110	0.4	290	250	0.008	0.004	1.33
	1		0.63	7.0	1920	752	120	0.29	1.4	89.3	0.007	0.002	0.321
	Bore hole number (SLL2000/)	Analyte	Standing Water Level (m)	pH - laboratory (pH Units)	Conductivity (µS/cm)	TDS (mg/L)	Chloride (mg/L)	Fluoride (mg/L)	Sulphate (mg/L)	NH ₃ -N (mg/L)	$(NO_2 + NO_3)-N (mg/L)$	NO ₂ -N (mg/L)	PO4-P (mg/L)

Comparison of analytical results against the Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000.

Table 2

Shaded areas indicate values above relevant guideline levels

** set to limit potential for corrosion and fouling of pumping, irrigation and stock watering systems

Chromium (VI) ***

Notes:

Suitability depends on salt tolerance of crop & calculation of ECse, the average root zone salinity. ECse depends on soil type & average root zone leaching fraction 301

depending on animal type

ES = Suits extremely sensitive crops

MT = Suits moderately tolerant crops

MR = Medium risk of increasing crop cadmium concentrations

STV – Short term trigger value for contaminant in irrigation water (<20 years) use
 LTV – Long term trigger value for contaminant in irrigation water (100 years) use

Appendix 1 Engineering logs

EXPLANATION SHEET FOR ENGINEERING LOGS Borehole and excavation log

Penetration

Water

22 Jan, 80 Water level on date shown Water inflow Water outflow

s —	samples and tests
U50	Undisturbed sample 50 mm diameter
D	Disturbed sample
Ν	Standard penetrometer blow count for 300 mm

SPT + Sample

Material classification

Based on Unified Soil Classification System.

In Graphic Log materials are represented by clear contrasting symbols consistent for each project.

Moisture content

- D Dry, looks and feels dry
- Moist, no free water on hand Μ when remoulding
- W Wet, free water on hand when remoulding
- LL Liquid limit
- PL Plastic limit
- ΡI Plasticity index
- e.g. M>PL Moist, moisture content greater than the plastic limit

Consistency

N*

Notes

	: nanc	a penetrometer
VS	Very soft	<25 (kPa)
S	Soft	25 – 50
F	Firm	50 – 100
St	Stiff	100 – 200
VSt	Very stiff	200 - 400
Н	Hard	>400
Fb	Friable	
Notes	: X on log is test	result

is range of results

Density index

		%
VL	Very loose	0 – 15
L	Loose	15 – 35
MD	Medium dense	35 – 65
D	Dense	65 – 85
VD	Very dense	85 – 100

Fracture description

RP	Rough planar
RL	Rough irregular
SP	Smooth planar
SL	Smooth irregular

Cored borehole log

Case - lift

Casing used

Fluid loss

No loss

50% loss

100% loss

Barrel withdrawn

Lugeons

Lugeon units (uL) are a measure of rock mass permeability. For a 46 to 74 mm diameter borehole 1 Lugeon is defined as a rate of loss of 1 litre per metre per minute. 1 Lugeon is roughly equivalent to a permeability of 1 x 10⁴⁴ mm / sec.

Stre	ngth point	t load strength
E 1	Fytromoly low	x 1 5 (50) (IVIPa)
EL	Extremely low	< 0.05
VL	Very low	0.03 – 0.1
L	Low	0.1 – 0.3
М	Medium	0.3 – 1
Н	High	1 – 3
VH	Very high	3 – 10
EH	Extremely high	n >10
Notes	s: X on log is tes	t result.

Graphic log

n,

No core

Significant defects

Joint

Significant defects shown graphically

Sheared zone

Crushed seam

Extremely weathered seam

Infill seam

Rock substances represented by clear, contrasting symbols consistent for each project.

Weathering

Fr	Fresh
SW	Slightly weathered
HW	Highly weathered
EW	Extremely weathered

ENGINEERING LOG - BOREHOLE

 $\begin{array}{c} \text{Borehole no.} \\ \text{SLL2000/1} \\ \text{Sheet} \quad 1 \quad \text{of} \quad 1 \end{array}$

Pro	jec	t	Sm	nithton s	sewa	ge la	goons Location	Pelican I	oin	t, Smithton
Co- R.L Incl Bea	ord inat	ina tior g	ntes 55	340219 m 5478587 al	nE mN		Drill type Auger Drill method Rotary Drill fluid Nil	Hole com Hole com Drilled by Logged by Checked I	meno olete / /	ed 30 August 2000 d 30 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
1 penetration	support	water	notes samples, tests	metres Gepth depth	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture	consistency	structure, geology
		Bentonite	D Sample ID 1	0.5 -		SM	SAND - fine, black	N		Quaternary windblown _ sand _
	No Screen		Sample ID	- - - 1.0					V	- - - - - - - - - - - - - - -
		el	D Sample ID 3			SP	SAND- medium, grey		V	L
	se	7 mm Grav	D Sample ID 4 D							
	n spaced 5mm holes		Sample ID 5 D Sample ID							
	Screen - 4 x 150m	?	D	3.0 -						
	reen 1.5 metre	Back fill	D Sample ID							- - - - -
	No Sc		shed	- 4.0 -			End of hole at 4.0 m			
			sample ID numbers refer to amples stored in MRT core s	- - - - - - -			Hand bailed for 10 minutes At end of bailing, pH 7.2 and conductivity 1850 µS/cm.			

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/2 Sheet 1 of 1

Pr	oje	ct	Sm	nithton s	sewa	ge la	goons Location P	elican Po	oint,	Smithton
Co R.I Inc Be	o-oro L. clina	lina tior g	ates 55 g	340268 m 5478466 al	nE mN		Drill type Auger H Drill method Rotary H Drill fluid Nil C C	Hole comm Hole compl Drilled by Logged by Checked by	enced	30 August 2000 30 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
5 penetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID 1			SP	SAND - medium, dark grey, various rock chip	s M	S L	Reworked Quaternary _ material _
	Vo Screen		D Sample ID 2			SP	SAND - medium, grey, 10% clay mottled blac	k M	L S	Quaternary beach sand with decayed organics
			D Sample ID 3			SP	SAND - medium, grey, strong organic odour	W	L S	Quaternary sand zone
	screen	el	D Sample ID 4			SP	SAND - medium, grey	W	VS VL	Quaternary beach sand –
		7 mm Grave	D Sample ID 5	2.0						
	.5 metre slotted	?	D Sample ID 6	D nple ID 6						
			D Sample ID 7	3.0						
	No Screen	Back fill	D Sample ID 8	3.5						
			sample ID numbers refer to amples stored in MRT core shed	4.0			End of hole at 4.0 m Pumped for 60 minutes at 3 L/m. At end of pumping, pH 6.7 and conductivity unstable.			- - - - - - - - - - - - - - - -

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/3 Sheet 1 of 1

Pr	ojeo	ct	Sm	nithton s	sewa	ge la	goons Location P	Pelican	n Po	oint, S	Smithton
Co R.I Inc Be	-oro 	lina tior g	ates 55	340182 n 5478708 al	nE mN		Drill type Auger H Drill method Rotary H Drill fluid Nil [Hole co Hole co Drilled k Logged Checkeo	mme mple by by d by	encec eted	30 August 2000 30 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
5 penetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.		moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID 1	-		SP	SAND - medium, dark grey, quartzite fragmer	nts	М	S L	Reworked Quaternary material
) Screen		D Sample ID 2	0.5		SP	SAND - medium, grey, 15% clay mottled blac	ck ¹	М	VL VS	Quaternary sand with
	Ň		D Sample ID 3	1.0		SP	SAND - medium, grey	,	W	VL S	Quaternary beach sand
			D Sample ID 4	1.5		SP	SAND -medium, grey	,	W	VS VL	Quaternary beach sand – –
		D Sampl B J J J J J J J J J J J J J J J J J J	D Sample ID 5	2.0							
	etre slotted scree	7 1	D Sample ID 6	2.5							
	1.5 m	?	D Sample ID 7	3.0 -							
	No Screen	Back fill	D Sample ID 8	3.5 -							-
			Sample ID numbers refer to samples stored in MRT core shed	4.0			End of hole at 4.0 m Pumped for 30 minutes at 0.6 L/m. At end of pumping, pH 7.4 and conductivity 1810 µS/cm.				

ENGINEERING LOG - BOREHOLE

 $\begin{array}{c} \text{Borehole no.} \\ \text{SLL2000/4} \\ \text{Sheet} \quad 1 \quad \text{of} \quad 1 \end{array}$

Pr	oje	ct	Sn	nithton	sewa	ge la	goons Location Pel	lican Pc	oint, S	Smithton
Co R. Inc Be	D-or L. clina earii	din atio	ates 55 (n Vertic	340306 n 5478647 al	nE mN		Drill type Auger Ho Drill method Rotary Ho Drill fluid Nil Dri Log Ch	ble comm ble comple illed by gged by ecked by	encec eted	30 August 2000 30 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
T penetration	3	water	notes samples, tests	metres Gepth	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID			SM	SAND -medium, mottled dark grey and light yellow	М	S L	Reworked Quaternary _ material _ -
	lo Coman		D Sample ID 2			SP	SAND - medium, grey, 5% sand mottled light re	ed M	S L	Reworked Quaternary material
			D Sample ID 3	1.0 -		SP	SAND - medium, dark grey	М	VL VS	Quaternary beach sand
			D Sample ID 4 Sample ID 5 Sample ID 6 Sample ID	1.5 -		SP	SAND - medium, grey	W	VS VL	Quaternary beach sand –
		7 mm Graval		2.0 -						
	e lottad coraan	מ פוחוונת פרו הכוו		2.5 -						
	1 5 metr		D Sample ID 7	3.0 -						
	No Screen		D Sample ID 8	3.5 -						
			Sample ID numbers refer to samples stored in MRT core shed	4.0 -			End of hole at 4.0 m Pumped for 30 minutes at 7 L/m. At end of pumping, pH 7.4 and conductivity 1840 µS/cm.			- - - - - - - - -

ENGINEERING LOG - BOREHOLE

 $\begin{array}{c} \text{Borehole no.} \\ \text{SLL2000/5} \\ \text{Sheet} \quad 1 \quad \text{of} \quad 1 \end{array}$

٦

Project Smithton sewag Co-ordinates 55 340284 mE					sewa	ge la	goons Location P	Pelican Point, Smithton			
Co R.I Inc Be	-or L. clina	dina atior	n Vertic	340284 n 5478626 al	nE mN		Drill type Auger H Drill method Rotary H Drill fluid Nil E C	Auger Hole commence Rotary Hole completed Nil Drilled by Logged by Checked by			
5 penetration	ellboort	water	notes samples, tests	metres Gepth t	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology	
		Bentonite	D Sample ID 1			SM	SAND - medium, grey, 10% clay black mottle	s M	S L	Reworked Quaternary material	
	lo Screen		D Sample ID 2	0.5 -		SP	SAND - fine, black and brown	М	S L	Quaternary windblown sand	
			D Sample ID 3	- 1.0		SP	SAND - fine, light grey, 5% sand black	W	S L	Quaternary windblown _ sand _ 	
			D Sample ID 4	1.5 -		SP	SAND - medium, light yellow-brown	W	VS VL	Quaternary dune sand –	
	d 5mm holac			2.0							
		and minine to		2.5 -		SP	SAND - medium, grey	W	VS VL	Quaternary beach sand _ 	
	A Corror A			3.0							
	No Screen 15			3.5							
			Sample ID numbers refer to samples stored in MRT core shed	4.0			End of hole at 4.0 m Pumped for 30 minutes at 3 L/m. At end of pumping, pH 6.8 and conductivity 940 µS/cm.				

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/6 Sheet 1 of 1

Project Smithton sewage lagoons Loca								lican Po	oint, S	Smithton
Co R.L Inc Bea	-ord lina [.] arin	ina tior g	ates 55 3 5 n Vertic	340253 n 5478602 al	nE mN		Drill type Auger Hole commence Drill method Rotary Hole completed Drill fluid Nil Drilled by Logged by Checked by			31 August 2000 31 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
t t t t t t t t t t t t t t t t t t t	support	water	notes samples, tests	R.L. depth depth	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID 1			SM	SAND - medium, black, clayey	М	S L	Reworked Quaternary material
	lo Screen		D Sample ID 2	0.5		SP	SAND - fine, light yellow, sand mottled grey	W	VS L	Quaternary windblown sand
			D Sample ID 3	- 1.0 - - -		SP	SAND - medium to coarse, light yellow-brown	W	VS VL	Quaternary dune sand
				1.5 - - -						
		m Gravel	D Sample ID 4	2.0		SP	SAND - medium, grey	W	VS VL	Quaternary beach sand _ - -
	stre slotted scree	7 m		2.5						
	1.5 mc	?	-	3.0 -						
	No Screen	Back fill		3.5 -						
			ID numbers refer to stored in MRT core shed	- 4.0 - - - - -			End of hole at 4.0 m Pumped for 30 minutes at 0.5 L/m. At end of pumping, pH 7.2 and conductivity 1480 µS/cm.			
			Sample samples	-	-					-

ENGINEERING LOG - BOREHOLE

 $\begin{array}{c} \text{Borehole no.} \\ \text{SLL2000/7} \\ \text{Sheet} \quad 1 \quad \text{of} \quad 1 \end{array}$

Pro	Project Smithton sewage lagoons Loca								n Po	oint, S	Smithton
Co R.L Inc Bea	-ord lina arin	lina tior g	ntes 55	340003 n 5478522 al	nE mN		Drill type Auger Drill method Rotary Drill fluid Nil	Hole commenced31 August 2000Hole completed31 August 2000Drilled byMr Shane HeawoodLogged byMr Andrew EzzyChecked byMr Adrian Waite			
 penetration 	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.		moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID 1			SM	SAND - medium, black-grey, quartzite chips to 100 mm x 30 mm	s up	М	S L	Reworked Quaternary material
	lo Screen		D Sample ID 2			SP	SAND - medium, black-grey, various rock fragments		М	S L	Reworked Quaternary material
	$\begin{bmatrix} 2 \\ 2 \\ Sample ID \\ 3 \end{bmatrix} = \begin{bmatrix} 1.0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $					SP	SAND - fine, light yellow- brown			S L	Quaternary windblown _ sand _
		Gravel	D Sample ID 4	1.5		SP	SAND - medium, light yellow-brown		W	VL VS	Quaternary dune sand – – –
	u	7 mm (D Sample ID 5	2.0							
	etre slotted scree		D Sample ID 6	2.5		SP	SAND - medium, grey		W	VS VL	Quaternary beach sand _
	1.5 m	?		3.0							
	No Screen	Back fill	D Sample ID 7	3.5		OL	CLAY - dark grey		W	F	Quaternary tidal _ marsh deposit _
			ample ID numbers refer to amples stored in MRT core shed	4.0			End of hole at 4.0 m Pumped for 30 minutes at 0.3 L/m. At end of pumping, pH 6.8 and conductivity 1390 µS/cm.				

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/8 Sheet 1 of 1

Project Smithton sewage lag Co-ordinates 55 339856 mE			sewa	ge la	goons Location I	Pelican P	oint,	Smithton		
Co R.L Inc Bea	Co-ordinates 55 339856 mE 5478540 mN R.L. Inclination Vertical Bearing				nE mN	I	Drill type Auger Drill method Rotary Drill fluid Nil	Hole comm Hole comp Drilled by Logged by Checked by	nenceo leted	 31 August 2000 31 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
5 penetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID 1	-		SM	SAND - fine, dark grey, 30% orange	M	L	Quaternary windblown _ sand _ _ _
	o Screen		D Sample ID 2	0.5		SP	SAND - fine, grey, white and light red	М	S L	Quaternary windblown _ sand _ -
	Ň		D Sample ID 3	1.0		SP	SAND - medium, grey	W	VS VL	Quaternary beach sand – – –
		avel		1.5						
		7 mm Gr		2.0						- - -
	e slotted screen		D Sample ID 4	2.5		SM	SAND - fine to medium, dark grey and black, silty	W	VS VL	Quaternary tidal marsh deposit
	1.5 metr	?	-	3.0 -						
	o Screen	Back fill	D Sample ID 5	3.5 -		SM	SAND - fine, dark brown, silty, strong organic odour	W	VL VS	Quaternary tidal marsh deposit
	N		Sample ID numbers refer to samples stored in MRT core shed	4.0 -			End of hole at 4.0 m Pumped for 30 minutes at 1.2 L/m. At end of pumping, pH 7.4 and conductivity 1660 μS/cm. Extreme H ₂ S odour from bore while install gravel pack and during pumping. (Vapour gas masks worn) OH&S warning for future monitoring of this bore.	ling 1g		- - - - - - - - - - - - - - - - - - -

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/9 Sheet 1 of 2

Project Smithton sewage lagoons Loo								Pelican	Poin	nt, S	Smithton
Co- R.L Incl Bea	ord inat	ina tior g	ites 55 3 5 n Vertic	340068 n 5478777 al	nE mN	I	Drill typeAugerDrill methodRotaryDrill fluidNil	Drill type Auger Hole commenced Drill method Rotary Hole completed Drill fluid Nil Drilled by Logged by Checked by			31 August 2000 31 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
 benetration 	support	water	notes samples, tests	metres depth depth	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture	conaition consistency	density index	structure, geology
		Bentonite	D Sample ID 1			SP	SAND - fine to medium, light yellow-brown	M		S L	Reworked Quaternary material
			D Sample ID 2		0%0%0		WASTE FILL - wood and plastic, sand, light yellow-brown	M			Domestic refuse
	No Screen			- 1.0	10100 10100 10100						
	I		D Sample ID 3	1.5 -	(C)		WASTE FILL - wood and plastic, sand, light red-grey	N	[Domestic refuse -
		Gravel	D Sample ID 4	2.0 -	170% 20% 20%		WASTE FILL - wood and plastic, sand, ligh brown-grey	nt M	[Domestic refuse
		7 mm	D Sample ID 5	2.5 -		SP	SAND - fine to medium, light brown-grey	W	, <u>,</u>	S L	Reworked Quaternary – material –
	lotted screen		D Sample ID 6	3.0 -		SP	SAND - medium, grey	W	V V	/L /S	Quaternary beach sand
	2.0 metre s			3.5							
		?		4.0 -							
	No Screen	Back fill		4.5-							

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/9 Sheet 2 of 2

Pro	Project Smithton sewage lagoons Loca						goons Location	Pelica	an Po	oint, S	Smithton
Co-ordinates 55 340068 mE Dr 5478777 mN Dr R.L. Dr Inclination Vertical Bearing							Drill type Auger Drill method Rotary Drill fluid Nil	Auger Hole commenced Rotary Hole completed Nil Drilled by Logged by Checked by			31 August 2000 31 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
benetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.		moisture condition	consistency density index	structure, geology
	Back fill						(As sheet 1)				-
			Sample ID numbers refer to samples stored in MRT core shed				End of hole at 5.5 m Pumped for 30 minutes at 0.7 L/m. At end of pumping, pH 7.5 and conductivity 1760 μS/cm. Note: Water samples had detergent foam on surface.				

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/10 Sheet 1 of 2

Project Smithton sewage lagoons Loca							goons Location F	Pelican	n Po	int, S	Smithton
Co- R.L Incl Bea	ord ina arin	lina tior g	ntes 55 2 S	340053 n 5478431 al	nE mN		Drill type Auger Hole Drill method Rotary Hole Drill fluid Nil Drille Logg Chec			enced eted	 31 August 2000 31 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
5 penetration 5 cm 5 cm 5 cm 5 cm 5 cm 5 cm 5 cm 5 cm	support	water	notes samples, tests	Retres depth depth	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.		moisture condition	consistency density index	structure, geology
		Bentonite	D Sample ID 1			SP	SAND - fine to medium, light grey	-	М	S L	Reworked Quaternary _ material _ -
			D Sample ID 2			SP	SAND - medium, dark grey and light yellow, metamorphic rock chips]	М	S L	Reworked Quaternary _ material _
			D Sample ID 3			SP	SAND - fine to medium, light brown-grey, metamorphic rock chips		М	S L	Reworked Quaternary material
	reen	Gravel		2.0 -							
	No Sc	7 mm (2.5							
				3.0 -		SP	SAND - medium, brown-grey	,	W	L S	Reworked Quaternary _ material _
			D Sample ID 4	3.5 -							
				4.0 -							- - - -
			D Sample ID 5	4.5-		SP	SAND - medium, grey	\	W	VS VL	Quaternary beach sand _ - -

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/10 Sheet 2 of 2

Project Smithton sewage lagoons Loc								Pelica	ın Po	oint,	Smithton
Co R.L Inc Be	-oro lina arir	dina itior	ntes 55	340068 n 5478777 al	nE mN		Drill type Auger Drill method Rotary Drill fluid Nil	Hole commenced Hole completed Drilled by Logged by Checked by			 31 August 2000 31 August 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
1 5 penetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.		moisture condition	consistency density index	structure, geology
	No Screen 1.5 metre slotted screen	Back fill ··· 7 mm Gravel	D Sample ID 6	6.0 -		CL	(As sheet 1) CLAY - dark grey, shell fragments		W	L	Quaternary tidal
			Sample ID numbers refer to samples stored in MRT core shed	7.0 -			End of hole at 7.0 m Pumped for 30 minutes at 0.4 L/m. At end of pumping, pH 7.5 and conductivity 1860 μS/cm.				

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/11 Sheet 1 of 1

Project Smithton sewage lagoons Location								lican Po	oint,	Smithton
Co- R.L Incl Bea	ord	lina tior g	ntes 55	339980 n 5479134 al	nE mN		Drill type Auger Hole commenced Drill method Rotary Hole completed Drill fluid Nil Drilled by Logged by Checked by			5 September 2000 5 September 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
benetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		te	D Sample ID 1	-		SP	SAND - fine, light yellow, rock fragments	М	S L	Reworked Quaternary _ material _
	lo Screen	Bentoni	D Sample ID 2			SP	SAND - medium, light and dark grey	М	S L	Reworked Quaternary material
	z		D Sample ID 3	- 1.0		SC	SAND - fine, black, clayey, sand light yellow	М	S L	Reworked Quaternary – tidal marsh deposit –
		Gravel	D Sample ID 4	1.5 -		SP	SAND - fine, grey-brown	М	S L	Reworked Quaternary
	u	7 mm (D Sample ID 5	2.0		SP	SAND - fine to medium, grey-brown	W	VL S	Reworked Quaternary tidal marsh deposit
	etre slotted scree		D Sample ID 6	2.5 -		SP	SAND - medium, grey	W	VS VL	Quaternary beach sand _
	1.5 m	?		3.0 -						
	No Screen	Back fill		3.5						
			Sample ID numbers refer to samples stored in MRT core shed	4.0			End of hole at 4.0 m Pumped for 30 minutes at 4 L/m. At end of pumping, pH 7.5 and conductivity 1180 µS/cm. Note: During pumping water had very strong H ₂ S odour.			

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/12 Sheet 1 of 1

Pr	oje	ct	Sm	nithton a	sewa	ge la	goons Location P	elican Po	oint,	Smithton
Co R.I Inc Be	-oro L. clina	dina Itior	ates 55	339748 n 5479080 al	nE mN		Drill type Auger H Drill method Rotary H Drill fluid Nil E C	Il type Auger Hole commenced Il method Rotary Hole completed I fluid Nil Drilled by Logged by Checked by		
2 penetration	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		e	D Sample ID 1	-		SP	SAND - fine, light yellow, rock fragments	М	S L	Reworked Quaternary material
	o Screen	Bentonit	D Sample ID 2	0.5 -		SP	SAND - medium, black, rock fragments	М	S L	Reworked Quaternary _ material _
	$\begin{vmatrix} \hat{z} \\ D \\ Sample ID \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$					SP	SAND - medium, brown-grey	М	S L	Reworked Quaternary – tidal marsh deposit –
		iravel	D Sample ID 4	1.5		SC	SAND - fine, grey, clayey	М	S L	Reworked Quaternary tidal marsh deposit
		7 mm C	D Sample ID 5	2.0 -		SC	SAND - fine to medium, grey, clayey, shell fragments	М	S L	Reworked Quaternary tidal marsh deposit and beach sand
	etre slotted scree		D Sample ID 6	2.5 -		SM	SAND - fine to medium, grey, silty	W	VS VL	Reworked Quaternary
	1.5 m	. ?	D Sample ID 7	3.0 -		SP	SAND -medium, grey, quartzite rock fragment	ts W	VS VL	Reworked Quaternary – beach sand including – imported rock –
	No Screen	Back fill		3.5						
			Sample ID numbers refer to samples stored in MRT core shed	4.0 -	- - - - - - - - - - -		End of hole at 4.0 m Pumped for 30 minutes at 0.4 L/m. At end of pumping, pH 7.6 and conductivity 1280 µS/cm. Note: During pumping water had strong detergent appearance and odour.			- - - - - - - - - - - - - - - -

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/13 Sheet 1 of 1

Project Smithton sewage lagoons Location Pelica									oint,	Smithton
Co R.L Inc Bea	-ord lina arin	lina tior g	ntes 55	339904 r 5479002 al	nE mN		Drill type Auger Hole Drill method Rotary Hole Drill fluid Nil Drille Logg Chec	comm compl ed by jed by ked by	enced	 5 September 2000 5 September 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
 benetration 	support	water	notes samples, tests	metres	graphic log	classification symbol	material soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency density index	structure, geology
		e	D Sample ID 1			SP	SAND - medium, dark grey, quartzite fragments	M	S L	Reworked Quaternary material
	o Screen	Bentonit	D Sample ID 2	0.5 -		SM	SAND - fine to medium, mottled light yellow, light red, dark grey and black, silty	М	S L	Reworked Quaternary _ material _
	Ň		D Sample ID 3	1.0 -		SM	SAND - fine to medium, mottled dark brown-grey and light yellow, silty	М	S L	Reworked Quaternary _ material _
		' mm Gravel	D Sample ID 4	1.5 -		SP	SAND - fine to medium, dark brown and light grey	M	S L	Reworked Quaternary tidal marsh deposit
	u	7 mm (D Sample ID 5	2.0 -		SP	SAND - medium, dark and light grey	M	S L	Reworked Quaternary _ beach sand _
	etre slotted scree		D Sample ID 6	2.5 -		SP	SAND - medium, grey	W	S L	Quaternary beach sand _
	1.5 m	?	D Sample ID 7	3.0 -		SP	SAND - medium, grey	W	VS VL	Quaternary beach sand – – –
	No Screen	Back fill	D Sample ID 8	3.5 -						
			Sample ID numbers refer to samples stored in MRT core shed	4.0 -			End of hole at 4.0 m Pumped for 30 minutes at 3.2 L/m. At end of pumping, pH 7.3 and conductivity 1560 µS/cm.			

ENGINEERING LOG - BOREHOLE

Borehole no. SLL2000/14 Sheet 1 of 1

Project Smithton sewage lagoons Loca								Location	Pelican Po	oint, S	Smithton
Co R.L Inc Bea	-ord linat	inate tion g	es 55 3 5 Vertic	340087 m 5479709 : al	nE mN		Drill type Aug Drill method Rot Drill fluid Nil	ger ary	Hole comm Hole comple Drilled by Logged by Checked by	encec eted	 5 September 2000 5 September 2000 Mr Shane Heawood Mr Andrew Ezzy Mr Adrian Waite
5 c penetration	support	water ø	notes samples, tests	R.L. depth	graphic log	classification symbol	mater soil type: plasticity or par colour, secondary and r	ial ticle characteristics, ninor components.	moisture condition	consistency density index	structure, geology
	n	Sa	D ample ID 1			SP	SAND - fine to medium, d dark grey	ark brown and	М	S L	Reworked Quaternary material
	No Scree	Bentonit	D ample ID 2	0.5		SP	SAND - fine to medium, bu dark grey	rown, light and	W	VS L	Reworked Quaternary material
		Sa	D ample ID 3 Major	1.0 - - -		SP	SAND - fine, light brown	-grey	W	VS VL	Quaternary windblown – sand –
	screen	Bravel	D ample ID 4	1.5 - - -		SP	SAND - fine, light yellow		W	VS VL	Quaternary windblown sand
	2.5 metre slotted	C mm ∟ Sa	D ample ID 5	2.0		SM	SAND - fine, grey, silty		W	VS VL	Quaternary windblown _ sand _
		Sa	D ample ID 6	2.5		SP	SAND - medium, grey		W	VS VL	Quaternary beach sand _
		<u>?</u> Sa	D ample ID 7	3.0		SP	SAND - medium, grey, she	ll fragments	W	VS VL	Quaternary beach sand –
	No Screen	Back fill Sa	D ample ID 8	3.5							
			Sample ID numbers refer to samples stored in MRT core shed	- 4.0 → - - - - - - - -			End of hole at 4.0 m Pumped for 45 minutes at 1 At end of pumping, pH 7.4 and conductivity 79	12 L/m. 0 μS/cm.			

Appendix 2

Raw data collected for slug extraction tests

Smithton lagoons pump tests - slug extraction recovery data

Date	14/08/2001
Bore	SLL 2000/7
TD	4.00 m
Flow	1.6 l/m
SWL	1.02 m

Recovery data

Time	Residual drawdown	Measurement	Time	Residual drawdown	Measurement
0.00	2.28	3.30	5.50	1.51	2.53
0.25	2.21	3.23	6.00	1.46	2.48
0.50	2.16	3.18	6.50	1.39	2.41
0.75	2.10	3.12	7.00	1.34	2.36
1.00	2.08	3.10	7.50	1.28	2.30
1.25	2.03	3.05	8.00	1.23	2.25
1.50	1.98	3.00	8.50	1.18	2.20
1.75	1.96	2.98	9.00	1.13	2.15
2.00	1.93	2.95	9.50	1.08	2.10
2.25	1.90	2.92	10.00	1.04	2.06
2.50	1.88	2.90	11.00	0.98	2.00
2.75	1.85	2.87	12.00	0.88	1.90
3.00	1.81	2.83	14.00	0.76	1.78
3.25	1.78	2.80	15.00	0.66	1.68
3.50	1.76	2.78	16.00	0.60	1.62
3.75	1.71	2.73	18.00	0.48	1.50
4.00	1.68	2.70	20.00	0.38	1.40
4.25	1.65	2.67	22.50	0.28	1.30
4.50	1.63	2.65	25.00	0.18	1.20
4.75	1.59	2.61	27.50	0.10	1.12
5.00	1.56	2.58	30.00	0.03	1.05

Recovery SLL 2000/7, 14 August 2001

Smithton lagoons pump tests - slug extraction recovery data

Date	14/08/2001
Bore	SLL 2000/12
TD	4.00 m
Flow	4.0 l/m
SWL	1.62 m

Recovery data

Time	Residual drawdown	Measurement
0.00	2.38	4.00
0.25	2.36	3.98
0.50	2.30	3.92
0.75	2.24	3.86
1.00	2.18	3.80
1.25	2.08	3.70
1.50	2.03	3.65
2.00	1.96	3.58
2.50	1.83	3.45
3.50	1.60	3.22
4.00	1.53	3.15
4.50	1.40	3.02
5.50	1.20	2.82
6.00	1.13	2.75
6.50	1.08	2.70
7.50	0.93	2.55
8.00	0.85	2.47
9.00	0.73	2.35
10.00	0.63	2.25
12.50	0.46	2.08
15.00	0.33	1.95
17.50	0.23	1.85
20.00	0.16	1.78

Time (minutes) 0.00 5.00 10.00 15.00 20.00 25.00 0.10 -Residual drawdown (metres) ٠ ٠ • ****** 1.00 ٠ 10.00

Recovery SLL 2000/12, 14 August 2001

Appendix 3

Analytical Services Tasmania — Laboratory reports

ANALYTICAL SERVICES TASMANIA

Sandy Bay Laboratory

c|- Chemistry Department University of Tasmania Sandy Bay Tasmania 7005 Telephone: (03) 6226 7175 Fax: (03) 6226 7825 Email: ast.sandybay@dpiwe.tas.gov.au

NATA Accreditation Number: 5589

Laboratory Report

Report No:	13773	Please quote this number when making enquiries about this report				
Submitted By:	Andrew E	Andrew Ezzy				
Client:	Mineral R	Mineral Resources Tasmania				
Site Description:	Smithton	Smithton Sewage Lagoons				
Received:	03-Nov-0	0 Client Order No:				
Report Date:	01-Dec-0)				
Report To:	Andrew E	zzy				
Address:	Gordons Hill Rd Rosny TAS 7018					

Test Method(s) :

1001-Water:	pH in Water by APHA Method 4500-H
1002-Water:	Conductivity by APHA Method 2510
1004-Water:	Solids, Total Dissolved by APHA Method 2540C
1101-Water:	Alkalinity by APHA Method 2320/4500-CO2
1103-Water:	Anions by Ion Chromatography APHA Method 4110C
1201-Water:	Nutrients by APHA Method 4500

NATA endorsed test report. This document shall not be reproduced, except in full. Samples analysed as received.

NATA Accreditation Number: 5589

Mite Johnson Manager Page 1 of 4

ANALYTICAL SERVICES TASMANIA

Sandy Bay Laboratory

c|- Chemistry Department University of Tasmania

Report No: 13773 Report Date: 01-Dec-00

		Lab.No.:	13089	13090	13091	13092	13093
		Sample Id.:	SLL 2000/1	SLL 2000/2	SLL 2000/3	SLL 2000/4	SLL 2000/5
Method	Analyte	Units / Sampled On :	01/11/00 14:25	01/11/00 13:50	01/11/00 16:00	01/11/00 15:45	01/11/00 15:20
1001-Water	рН		7.0	6.7	7.0	7.0	6.5
1002-Water	Conductivity	μS/cm	1920	3700	2060	2180	1280
1004-Water	TDS	mg/L	752	1390	877	1260	851
1101-Water	Alkalinity CO3	mg/L CaCO3	<1	<1	<1	<1	<1
	Alkalinity HCO3	mg/L CaCO3	730	1410	779	672	455
1103-Water	Chloride	mg/L	120	110	140	380	110
	Fluoride	mg/L	0.29	0.40	0.29	0.27	0.09
	Sulphate	mg/L	1.4	290	2.7	11	4.8
1201-Water	Ammonia	µg-N/L	89300	250000	84400	800	1440
	Nitrate+Nitrite	μg-N/L	7	8	6	4	12
	Nitrite	μg-N/L	2	4	2	<2	7
	Ortho-P	μg-P/L	132	1330	5440	4	6

ANALYTICAL SERVICES TASMANIA Sandy Bay Laboratory

c|- Chemistry Department University of Tasmania

Report No: 13773 Report Date: 01-Dec-00

		Lab.No.: Sample Id.:	13094 SLL 2000/6	13095 SLL 2000/7	13096 SLL 2000/8	13097 SLL 2000/9	13098
Method	Analyte	Units / Sampled On :	01/11/00 14:50	01/11/00 10:40	01/11/00 11:25	01/11/00 09:10	01/11/00 10:05
1001-Water	рН		6.9	7.0	7.1	6.7	7.0
1002-Water	Conductivity	μS/cm	1630	2980	12900	3240	3740
1004-Water	TDS	mg/L	960	2010	8750	2910	
1101-Water	Alkalinity CO3	mg/L CaCO3	<1	<1	<1	<1	<1
	Alkalinity HCO3	mg/L CaCO3	697	761	429	740	1300
1103-Water	Chloride	mg/L	130	320	4000	41	380
	Fluoride	mg/L	0.07	1.5	1.1	0.05	
	Sulphate	mg/L	1.0	480	650	1400	140
1201-Water	Ammonia	μg-N/L	23100	837	406	12500	117000
	Nitrate+Nitrite	μg-N/L	8	6	12	6	. 9
	Nitrite	µg-N/L	3	<2	6	2	4
	Ortho-P	µg-P/L	3	7	13	4	12

ANALYTICAL SERVICES TASMANIA Sandy Bay Laboratory

c|- Chemistry Department University of Tasmania

Report No:	13773	Report Date: 01-Dec-00					
		Lab.No.:	13099	13100	13101	13102	
		Sample Id.:	SLL 2000/11	SLL 2000/12	SLL 2000/13	SLL 2000/14	
Method	Analyte	Units / Sampled On :	01/11/00 12:10	01/11/00 12:40	01/11/00 13:25	01/11/00 16:30	
1001-Water	pН		7.4	6.8	6.8	7.2	
1002-Water	Conductivity	μS/cm	1200	7770	1440	747	
1101-Water	Alkalinity CO3	mg/L CaCO3	<1	<1	<1	<1	
	Alkalinity HCO3	mg/L CaCO3	312	778	356	252	
1103-Water	Chloride	mg/L	160	1600	200	26	
	Sulphate	mg/L	3.5	300	18	14	
1201-Water	Ammonia	μg-N/L	16100	24700	33200	295	
	Nitrate+Nitrite	μg-N/L	7	12	7	2900	
	Nitrite	μg-N/L	3	6	3	5	
	Ortho-P	µg-P/L	2180	5	31	10	

Appendix 4

Analytical results on site maps

Smithton sewage lagoons — November 2000 Conductivity (mg/L)

Smithton sewage lagoons — November 2000 Alkalinity HCO₃ (mg/L CaCO₃)

Smithton sewage lagoons — November 2000

Smithton sewage lagoons — November 2000 Fluoride (mg/L)

Smithton sewage lagoons — November 2000

40

